반응형

로지스틱 3

[빅데이터분석기사] 로지스틱 회귀분석(Logistic Regression Analysis)

로지스틱 회귀 데이터가 어떤 범주에 속할 확률을 0에서 1 사이의 값으로 예측하고, 그 확률에 따라 가능성이 더 높은 범주에 속하는 것으로 분류하는 기법이다. 0.5 보다 크면 어떤 사건이 일어난다.(성공확률) 0.5 보다 작으면 어떤 사건이 일어나지 않는다.(실패확률) 합격/불합격, 성공/실패, 생존/사망, 진실/거짓 등 이분법적인 결과를 도출하기 위해 주로 사용되는 회귀분석 방식으로 예측을 주목적으로 하는 회귀분석과 차이가 있다. 로지스틱 회귀분석 방법 로지스틱 회귀 분석은 이진 분류를 수행한믄 데 사용된다. 즉, 데이터 샘플을 양성(1) 또는 음성(0) 클래스 둘 중 어디에 속하는지 예측한다. 각 속성(feature)들의 계수 log-odds를 구한 후 시그모이드 함수를 적용하여 실제로 데이터가 해..

[빅데이터분석기사] 회귀분석(Regression Analysis)

회귀분석 일반적으로 예측을 목표하는 통계 분석이다. 예측을 하는 방법에 핵심이 되는 개념이 바로 '추세선'이다. 좌표상에서 데이터의 분포와 앞으로의 변화를 가장 잘 설명할 수 있는 하나의 선을 그려내는 것이 회귀분석의 궁극적인 목적이 된다. 추세선의 의미 직선의 추세선을 수식으로 표현하면, y=ax+b와 같은 1차 방정식이 된다. 여기서 x와 y는 이미 알고 있는 데이터값이다. 여기서 수식을 활용해 데이터 변화의 추세를 확인하는 방법은 x와 y에 들어오는 값을 기준으로 해당 수식을 충족시키는 a(=기울기), b(=절편) 값을 찾는 것이다. 즉, 추세선을 통한 회귀적 예측이란 곧 a, b를 구하는 과정을 말하는 것이다. 여기서 a와 b를 '회귀계수'라 한다. 회귀의 시작, 최소제곱법(=최소자승법 Ordin..

[빅데이터분석기사] 파이썬 머신러닝(ML) 기본 틀 맛보기

일단 아래의 머신러닝 전 과정을 한번 훑고, 세부적으로 공부할 것 ---분석데이터 검토--- import pandas as pd data=pd.read_csv('데이터명', encoding='utf-8') data.head() print(data.shape()) ---특성(X)과 레이블(y) 나누기--- X1=data[['a', 'b', 'c']] y=data[['z']] ---train, test 데이터셋 나누기--- from sklearn.model_selection import train_test_split X_train, X_test, y_train, y_test = train_test_split(X1, y, stratify=y, random_state=42) ---정규화(MinMax)--- fr..

반응형