로지스틱 회귀 데이터가 어떤 범주에 속할 확률을 0에서 1 사이의 값으로 예측하고, 그 확률에 따라 가능성이 더 높은 범주에 속하는 것으로 분류하는 기법이다. 0.5 보다 크면 어떤 사건이 일어난다.(성공확률) 0.5 보다 작으면 어떤 사건이 일어나지 않는다.(실패확률) 합격/불합격, 성공/실패, 생존/사망, 진실/거짓 등 이분법적인 결과를 도출하기 위해 주로 사용되는 회귀분석 방식으로 예측을 주목적으로 하는 회귀분석과 차이가 있다. 로지스틱 회귀분석 방법 로지스틱 회귀 분석은 이진 분류를 수행한믄 데 사용된다. 즉, 데이터 샘플을 양성(1) 또는 음성(0) 클래스 둘 중 어디에 속하는지 예측한다. 각 속성(feature)들의 계수 log-odds를 구한 후 시그모이드 함수를 적용하여 실제로 데이터가 해..