반응형

빅데이터분석기사/개념 19

[빅데이터분석기사] 순환신경망(Recurrent Neural Network)

핵심요약 순환신경망(Recurrent Neural Network)은 시간 순서가 있는 데이터를 잘 예측하도록 설계된 인공신경망 모델들 중 하나이다. 과거의 신호를 기억할 수 있는 장치(Hidden State)를 두어 입력신호를 순환, 반복하는 순환적 구조를 갖고 있어서 시간적 순서 특성을 추출하는데 용이하다. 특징 일반적인 인공신경망이 은닉층을 통해 한꺼번에 가중치 연산이 이루어 지는 것과 비교해서 순환신경망은 이전 데이터의 가중치 연산이 다음 데이터에 일정 부분 영향을 줄 수 있도록 구성되어 있다. 이러한 구조는 시간 순서의 정보가 중요한 데이터에서 이전 데이터를 보고 다음 데이터를 예측하는데 도움을 준다. 순차 데이터(Sequential Data) 순서나 시간이 전체 데이터에서 의미가 있으며 그 순서..

[빅데이터분석기사] 합성곱신경망(Convolutional Neural Network)

핵심요약 합성곱신경망(CNN)은 인공신경망 모델의 하나로 패턴을 찾아 이미지를 분석하는데 특화된 알고리즘이다. 주요 구성은 크게 합성곱(Convolution) 연산과 풀링(Pooling) 연산으로 나눌 수 있다. 합성곱 원본 이미지와 영상의 패턴을 추출할 수 있는 필터(Filter)를 이용하여 특징을 추출하는 과정이다. 필터는 원본 이미지를 움직이면서(Stribe) 이미지의 특징을 뽑아내는 결과물(Feature Map)을 만든다. 결과물(Feature Map)은 원본 이미지릐 인접한 픽셀 간 연관성 있는 패턴 정보를 잃지 않고 반영할 수 있다. 풀링(Pooling) 합성곱 연산을 통해 나온 결과물에서 대푯값들만 뽑아내는 과정이다. 이미지 패턴 정보를 단순화, 추상화하는 작업으로 생각할 수 있다. 풀링의 ..

[빅데이터분석기사] 심층신경망(Deep Neural Network)

핵심요약 심층신경망(Deep Neural Network)은 인공신경망(Aritificial Neural Network)과 동일한 구조와 동작 방식을 갖고 있다. 심층신경망은 단지 인공신경망에서 은닉층(Hidden Layer)의 깊이가 깊어진 형태를 말한다. 신경망의 발전계기 인공신경망의 기본 아이디어가 나온 것은 1950년대이고 이후에 발전을 거듭하지만 불과 2000년대 중반까지만 해도 사람들로 하여금 그다지 알려지고 활용되던 기술이 아니었다. 여기에는 몇 가지 이유가 있는데 하나는 당시에 GPU와 같은 수많은 가중치를 빠르게 계산할 수 있는 자원(Resource)이 충분치 않았고, 사람이 원하는 수준으로 성능을 올리기 위해서 필요했던 충분한 양의 데이터(Data)를 모으기에도 인프라가 부족했다. 또한 ..

[빅데이터분석기사] 인공신경망(Artificial Neural Network)

핵심요약 인공신경망(ANN)은 기계학습과 인지과학 분야에서 고안한 학습 알고리즘이다. 신경세포의 신호 전달체계를 모방한 인공뉴런(노드)이 학습을 통해 결합 세기를 변화시켜 문제를 해결하는 모델 전반을 가리킨다. 인공신경망의 시작, 퍼셉트론 퍼셉트론은 신경세포 뉴런들이 신호, 자극 등을 받아 어떠한 임계값(threshold)을 넘어서면 그 결고를 전달하는 신경세포의 신호 전달 과정을 착안하여 만들어졌다. 이를 수학적인 기호로 모델링 한 것이 퍼셉트론인데, 퍼셉트론은 각각의 가중치의 크기를 적절히 조절하여 입력 신호이 크기를 정한다. 입력 신호들의 합에 활성화 함수를 거쳐 나온 결괏값을 전달함으로써 원하는 결괏값을 얻는 방식으로 동작한다. 아래 그림은 단층 퍼셉트론으로 AND, OR, NAND와 같은 비교적..

[빅데이터분석기사] 군집분석(Clustering Analysis)

군집분석 분류 기준이 없는 상태에서 데이터 속성을 고려해 스스로 전체 데이터를 N개의 소그룹으로 묶어내는(Clustering) 분석법이다. 유사성이 높은 대상 데이터를 묶고, 서로 다른 그룹에 속한 데이터 개체 간의 이질성을 계산하는 과정을 거친다. 계층적 군집화(Hierarchical Clustering) 가장 유사한 개체를 묶어 나가는 과정을 반복하여 원하는 개수의 군집을 형성하는 방법이다. 계층적 군집을 형성하는 방법에는 작은 군집으로부터 출발하여 군집을 변합해 나가는 병합적 방법과 큰 군집으로부터 출발하여 군집을 분리해 나가는 분할적 방법이 있다. 왼쪽 그림은 병합적 방법으로 군집을 형성해 나가는 과정을 보여주고 있다. 계층적 군집의 결과는 오른쪽 그림과 같이 덴드로그램(dendrogram)의 형..

[빅데이터분석기사] 서포트벡터머신(SVM)

서포트벡터머신(SVM) 분류를 위한 기준선을 정의하는 모델이다. 분류되지 않은 새로운 점이 나타나면 어느 쪽에 속하는지 확인을 위해서 결정 경계를 정한다. 데이터에 2개 속성(feature)만 있다면 결정 경계는 간단한 선 형태가 된다. 속성이 3개가 되면 3차원으로 그려야 한다. 이때의 결정 경계는 '선'이 아닌 '평면'이 된다. 우리가 이렇게 시각적으로 인지할 수 있는 범위는 딱 3차원까지다. 차원, 즉 속성의 개수가 늘어날수록 당연히 복잡해질 것이다. 결정 경계도 단순한 평면이 아닌 고차원이 되는데 이를 '초평면(hyperplane)'이라고 부른다. 결정 경계는 여러 형태로 정할 수 있다. 그래프C를 보면 경계선이 파란색 클래스(분류)와 너무 가까워 보인다. 결정 경계가 가장 적절한 것은 그래프 F..

[빅데이터분석기사] 앙상블(Ensemble)

앙상블 학습(Ensemble Learning) 그동안 우리는 여러 기계학습 모델들을 살펴보았다. 이렇게 개별적으로 동작하는 모델들을 모아 종합적으로 의사결정을 한다면 어떨까? 앙상블은 프랑스어로 전체적인 어울림이나 통일을 의미하며 음악에서 2인 이상의 가창이나 합주를 의미하기도 한다. 예측력을 높이기 위해 여러 가지 학습알고리즘이 어울려 성능을 높이는 방식을 기계학습 분야에서 앙상블(Ensemble) 학습이라 한다. 앙상블 종류 앙상블 학습 방식에는 크게 Voting, Bagging, Boosting의 3가지로 나눌 수 있다. Voting(투표) 방식은 여러 모델로부터 나온 후보 결과들 중 다수가 나온 결과를 채택하는 방식이다. Bagging은 같은 모델을 사용하지만 훈련세트에서 중복을 허용한 여러 부분..

[빅데이터분석기사] 랜덤포레스트(Random Forest)

랜덤포레스트(RF) 의사결정나무를 여러개 모아서 데이터 분류 및 예측을 수행하는 AI알고리즘이다. 어떤 데이터 집단에 대한 분류나 예측을 실시한다고 할 때, 하나의 결정트리를 사용하는 것보다 여러 트리를 결합해서 사용하면 보다 높은 성능의 알고리즘 모형을 만들 수 있다. 여러 나무와 하나의 포레스트, 배깅(Bagging, Bootstrap Aggregationg) 결정트리를 독립병렬 결합하는 방식을 배깅이라고 한다. 원 자료에서 하위 데이터 세트를 만드는 부트스트랩 과정을 포함한다. 데이터 건수는 동일하게 그리고 데이터 무작위 추출 시 중복은 허용(복원추출)하여 각 트리 모형들이 학습할 데이터 세트를 그 수에 맞게 준비해야 한다. 가령 결정트리 서른 개를 사용한다면, 전체 자료에서 데이터를 추출하여 30..

[빅데이터분석기사] 의사결정나무(Decision Tree)

의사결정나무 일종의 분류 기법이다. 전체 집단을 계속 양분하는 분류기법으로써 분기가 발생하는 포인트(=노드)에는 기준이 되는 질문이 있어 기준 질문에 부합하냐(YES), 부합하지 않느냐(NO)에 따라 노드 이동의 방향이 결정된다. 의사결정나무 모형은 분류(classification)와 회귀예측(regression) 모두 가능한 알고리즘이다. 분류나무 모형은 불연속적(이산형 자료)인 값을 예측한다. 예를 들어 분류 모델은 다음과 같은 질문에 대한 답을 예측한다. '수신된 이메일이 스팸인가 아닌가?', '이 사진이 강아지인가 고양이인가 또는 햄스터인가?'와 같은 질문에 답을 내기 적합한 비지도 분류 알고리즘 모형이다. 한편 회귀분석의 한 갈래인 회귀나무 모형은 연속적인 값을 예측한다. 예를 들어 회귀 모델은..

[빅데이터분석기사] 최근접 이웃(K-Nearest Neighbors)

최근접 이웃 알고리즘은 우리가 예측하려고 하는 임의의 데이터와 가장 가까운 데이터 K개를 찾아 다수결에 의해 데이터를 예측하는 방법이다. 위 그림과 같이 두 그룹의 데이터가 있을 때 주어진 임의의 데이터가 어느 그룹에 속할 것인지를 K-NN 알고리즘으로 풀 수 있다. 별 데이터로부터 가장 가까운 K개 데이터들이 더 많이 속한 그룹으로 별 모양 데이터를 분류하는 알고리즘이다. K가 3이라면 3개의 데이터를 확인해 더 많은 데이터가 있는 B그룹으로 주어진 임의의 데이터를 분류한다. K의 선택 기준은 학습의 난이도와 데이터의 개수이며, 보통 훈련 데이터 개수의 제곱근으로 설정한다. K와 별 모양 데이터 간 좌표상 거리도 고려해야 한다. K를 4로 설정했다면 별 모양 데이터를 기준으로 4개의 데이터 간 떨어진 ..

반응형